ASSIGNMENT代写

英国达特茅斯代写Essay:缸中之脑

2018-10-07 12:18

“我是缸中之脑”的说法肯定是错误的,因为实例BIV断定我们不是缸中之脑。因此,按照这个逻辑,我们不应该在大桶里装脑子。从表面上看,这可能听起来不错,但我打算说明帕特南可能没有抓住问题的要害。乍一看,有形世界实例、BIV实例和通用实例背后的逻辑似乎是相同的,因为它们各自都推断出我们不是缸中的大脑;然而,每个规定都包含了“vat”这个词的不同含义。在通用实例中使用的“vat”表示前面提到的两个实例(即有形世界和BIV实例)之间的一个模糊术语;有形的“增值税”代表着来自有形世界的大桶,正如我们今天所理解的那样;而BIV“vat”代表着超级惊人的计算机通过其电信号为我们创造的虚拟vat。Putnam的错误发生在他没有通过在整个实例BIV中使用人工vat的后一种含义来普及增值税定义时。虽然有点令人困惑,但Putnam似乎考虑到了这个实例(BIV1),因为它是真实的唯一时间是后一种意义上的“vat”。帕特南还想把这个定义与现实世界联系起来。毕竟,我们都生活在有形的世界里,在有形的世界里,我们都愿意相信自己不是缸中之脑。不幸的是,在试图证明这一结论时使用稍微不同的定义会妨碍论证。换句话说,他的论证要么是‘(BIV1)暗示(BIV2)暗示(TC)’要么是‘(BIV1)暗示(T2)暗示(TC)’;然而,这些论点并不成立。
英国达特茅斯代写Essay:缸中之脑
The uttering of “I am a brain-in-a-vat” must be false since the instance BIV concludes that we are not brains in vats. As a result, we mustn’t be brains in vats according to this logic. While on the surface this may seem sound, I intend to show how Putnam may have missed the mark.At first glance, the logic behind the Tangible world instance, the BIV instance, and the Universal instance may seem identical insofar as they each deduce we are not brains in vats; however, each stipulation incorporates a different meaning of the word “vat.” The “vat” used in the Universal instance represents an obscure term between the first two mentioned instances (i.e. Tangible world and BIV instance); the Tangible “vat” represents vats from the tangible world just as we would perceive it today; and the BIV “vat” stands for the virtual vat that the super phenomenal computer has created for us with its electric signals. Putnam’s error occurs when he doesn’t universalize the vat definition by using the latter sense of the artificial vat throughout instance BIV. While a bit confusing, it seems Putnam considers the instance (BIV1) since the only time it is true is in the latter sense of “vat.” Putnam also wants to tie this definition to the Tangible world. After all, we all live in the tangible world and would want to believe we are not brains in vats while in the tangible world. Unfortunately, using slightly different definitions during an attempt to prove this conclusion hampers the argument. In other words, his argument is either that ‘(BIV1) implies (BIV2) implies (TC)’ or that ‘(BIV1) implies (T2) implies (TC); however, these arguments fail to hold true.